Gated Recurrent Unit (GRU) for Emotion Classification from Noisy Speech
نویسنده
چکیده
Despite the enormous interest in emotion classification from speech, the impact of noise on emotion classification is not well understood. This is important because, due to the tremendous advancement of the smartphone technology, it can be a powerful medium for speech emotion recognition in the outside laboratory natural environment, which is likely to incorporate background noise in the speech. We capitalize on the current breakthrough of Recurrent Neural Network (RNN) and seek to investigate its performance for emotion classification from noisy speech. We particularly focus on the recently proposed Gated Recurrent Unit (GRU), which is yet to be explored for emotion recognition from speech. Experiments conducted with speech compounded with eight different types of noises reveal that GRU incurs an 18.16% smaller run-time while performing quite comparably to the Long Short-Term Memory (LSTM), which is the most popular Recurrent Neural Network proposed to date. This result is promising for any embedded platform in general and will initiate further studies to utilize GRU to its full potential for emotion recognition on smartphones.
منابع مشابه
Analysis on Gated Recurrent Unit Based Question Detection Approach
Recent studies have shown various kinds of recurrent neural networks (RNNs) are becoming powerful sequence models in speech related applications. Our previous work in detecting questions of Mandarin speech presents that gated recurrent unit (GRU) based RNN can achieve significantly better results. In this paper, we try to open the black box to find the correlations between inner architecture of...
متن کاملImproving Speech Recognition by Revising Gated Recurrent Units
Speech recognition is largely taking advantage of deep learning, showing that substantial benefits can be obtained by modern Recurrent Neural Networks (RNNs). The most popular RNNs are Long Short-Term Memory (LSTMs), which typically reach state-of-the-art performance in many tasks thanks to their ability to learn long-term dependencies and robustness to vanishing gradients. Nevertheless, LSTMs ...
متن کاملEmpirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
In this paper we compare different types of recurrent units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU). We evaluate these recurrent units on the tasks of polyphonic music modeling and speech signal modeling. Our experiments...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملInternal Memory Gate for Recurrent Neural Networks with Application to Spoken Language Understanding
Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNN) require 4 gates to learn shortand long-term dependencies for a given sequence of basic elements. Recently, “Gated Recurrent Unit” (GRU) has been introduced and requires fewer gates than LSTM (reset and update gates), to code shortand long-term dependencies and reaches equivalent performances to LSTM, with less processing time during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.07778 شماره
صفحات -
تاریخ انتشار 2016